The engines are attached to the wings, of course. And while it’s not immediately obvious how the wings would be a project unto themselves, we found a way.
Jason really doesn’t want the wings to sag over time. Even at 1/12th scale they are very thin. So, naturally we were going to look at a machined aluminum frame. Probably not red-anodized though. Ha.
The wings have fairly large maintenance pits cut into them, so solid aluminum wouldn’t be an option. Most of the wing structure will need to be eviscerated to keep it looking like the studio model. With so much material removed, we wanted to check the mechanical stresses on the wings.
A few iterations and finite element analyses later, we think we’re good. Thank you, Andre! We factored in the weight of all the bits that get added to the wing in our force loads, and looked at both orientations of the upper and lower wings. I’m still pushing for at least one of the acrylic fascia panels to be carbon or glass fiber. But even with just the aluminum and acrylic laminate, it should be plenty sturdy with a strong aerospace-grade epoxy.
With a plan of attack for structure in place, it was time to start modeling donors and detailing.
Each wing has a little face plate that nestles next to the engine fronts. Each made up of SeaLab, 1/15 Bandai parts, some Apollo bits, and tiny 1/72 0.50 cal parts. If you’ve ever wondered about the differences between the Bandai 1/15 Hummel and Stug parts, we modeled both – after the first attempt with Hummel parts didn’t fit the way we wanted them to.
While we’re having fun with GIF’s, we took this opportunity to “fix” the way the 1/15 Stug IV parts nest together on the butt-end of the wings. If you look at this area on the original models, they are all positioned slightly different; the main reason being that the Stug parts don’t actually line-up very well regardless how you stuff them in there. So we cheated and made custom versions that nest the way they “should” – so says us.
Moving to the interior of the wing, we got the opportunity to up-detail the pits. This was a lot of fun as it’s an area that you don’t get to see very well on the 1/24 scale – but on this big model, you’ll be able to stick your head right in there for closer look. We looked at a ton of real-world airplane landing gear bays, and aerospace structures for inspiration.
Of course, why stop at just the stuff you typically saw at a distance on the studio models? We were sure to add a bunch of stuff that you’ll now be able to see under the panel reveals. We routed cabling from the manifold-looking SeaLab railings, and used existing features on the SeaLab platforms as “tie-down” locations as they wrap around and out to the wing tips. Lots of neat little valves, regulators, pressure vessels, and access panel covers jammed in here.
Lastly, if you ever want to break the export function in Fusion 360, just throw a bunch of Holgate & Reynolds HO-scale brick at it. This one single component totally breaks Fusion. The F-4 nozzles come close (we can at least get the part to export independently of the assembly), but there’s something about this brick pattern that brings the software to a grinding halt on export. The whole 1/12-scale X-Wing in all it’s glory tumbles at silky smooth 60fps on my MacBook Pro, but even trying a cloud export on Autodesk’s servers dies. Several calls to tech support have been made. We can mange to get STL’s out though – so we’re good.